
66 The Delphi Magazine Issue 66

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

Printing Web Pages

QFurther to your Using
Internet Explorer item in

Issue 47 (July 1999) of The Delphi
Magazine I have been trying, with
little success, to print the currently
displayed web page.

Microsoft’s knowledge base sug-
gests that setting the focus to the
web browser and then sending
Ctrl+P to the control by using the
KeyBd_Event function will generate
printed output. This works fine if
you have not removed focus from
the control since it was created.

But I have found that once key-
board focus has been set to an
alternative control (such as a
button that gets pressed) it seems
impossible to get focus back to the
original web browser handle. I’ve
compared the browser’s Handle
property with the return value
from GetFocus and the values are
different.

As a result, Ctrl+P only works
when the web browser is the active
control when the form starts. After
this, when the other window
handle has focus, Ctrl+P no longer
works.

AThe entry in The Delphi
Clinic referred to in the

question covered using Internet
Explorer from within a Delphi 4 ap-
plication by importing it as an
ActiveX, or controlling it either
with Automation via a Variant, or
with COM through its interfaces.
Delphi 5 introduced the TWeb-
Browser component on the
Internet page of the Component
Palette that gives direct access to
the Internet Explorer object (as a
pre-installed ActiveX), but the
question of how to print a
displayed page remains.

Firstly, let’s look at this business
of the window handles. I made a
simple mock-up of the application

described in the question, with a
panel containing a TWebBrowser (set
as the active control at design-
time) and a button. A quick browse
across the form with WinSight (as
shown in Figure 1) tells us how the
control is laid out in the eyes of
Windows.

You can see that the TPanel
window has a child window, whose
class name is Shell Embedding,
which has a child window of its
own, of class Shell DocObject View.
This window also has a child,
whose class name is Internet
Explorer_Server.

To see how focus changed
between these windows, I selected
WinSight’s Spy | Follow Focus
menu item so it would keep track
of the focused window for me. It
turns out that when the program
starts, the Shell Embedding window
is focused. However, if you either
click on another control (such as a
button) and back on the browser,
or just click directly on the
browser, the Internet Explorer
_Server window gets focus.

This confirms what the ques-
tioner suggests about focus
changes. However, in my testing
(with Internet Explorer version 4)
it made no difference which of
these windows had focus: a
manual press of Ctrl+P worked
regardless. Given this, I would
expect KeyBd_Event to demonstrate
the same behaviour.

Irrespective of how well the key-
stroke performs against the web
browser, it seems that this is not
the preferred way of invoking a
print operation from it. Instead, we
can do it using one of the methods
of the web browser control.

For a general overview of pro-
grammatic printing from Internet
Explorer, you should refer to the
article Printing with the Internet
Explorer WebBrowser Control, by
Microsoft’s Dave Templin. I found
this as one of the pages of the Web
Workshop in the Platform SDK

➤ Figure 1: The windows that make up a TWebBrowser control.

procedure TForm1.actPrintPageExecute(Sender: TObject);
begin
try
WebBrowser.ExecWB(OLECMDID_PRINT, OLECMDEXECOPT_PROMPTUSER)

except
on E: EOleException do begin
E.Message := 'Printing cancelled';
raise

end
end

end;
procedure TForm1.actPrintPageUpdate(Sender: TObject);
begin
(Sender as TAction).Enabled :=
WebBrowser.QueryStatusWB(OLECMDID_PRINT) or OLECMDF_ENABLED <> 0

end;

➤ Listing 1: Using an action
to print a web page, when
appropriate.

February 2001 The Delphi Magazine 67

documentation on the MSDN
Library CD. If you have that CD,
then from Platform SDK, choose
Web Services, then Workshop, then
Reusing Browser Technology, then
Browser Overview, and then Print-
ing with the WebBrowser Control.
You can also find the article online
at http://msdn.microsoft.com/
workshop/browser/wb_print.asp.

The advice given is to pass an
appropriate command ID for a
print operation to the ExecWB
method after checking the com-
mand is available with Query-
StatusWB. I’ve tested this out and it
works successfully. Listing 1
shows the implementation of an
action that prints the current web
page through its OnExecute event
handler, but whose OnUpdate event
handler ensures it is only enabled if
printing is supported.

The command for printing
(OLECMDID_PRINT) is passed as the
only parameter to QueryStatusWB,
which returns a bitmask value. If
the bits represented by the
OLECMDF_ENABLED constant are set,
the command is available. To print
a page, OLECMDID_PRINT is passed as
the first parameter to ExecWB, and
the second parameter allows you
to specify that the normal printer
settings dialog is used.

One point to note is that if the
user cancels the printer settings
dialog, the printing is aborted and
an exception is raised to indicate
this. However, the message in the
exception is very unrepresentative
of the problem, so the code
catches the error and changes the
error message.

A sample project that uses the
action in conjunction with a
TWebBrowser component is on the
disk as called IEPrint.dpr. You can
see it running in Figure 2, with its
print button enabled. This button
is connected to the print action, so
the fact that it is enabled indicates
printing support is available.

Unit Ambiguity

QI am trying to call a Win32
API routine (SetParent). I

have found that it is declared in the
Windows.pas import unit but can-
not see how to call it. Whenever I
try, I get an error because the com-
piler thinks I want to call the VCL
SetParent method, which expects
one TWinControl parameter, not
two window handles as expected
by the API routine, which I am
passing.

AThis is the age-old scope
issue, present in most pro-

gramming languages. There is the
potential for some identifier (a
constant, variable, procedure,
function or type) to be declared in
multiple locations and the chal-
lenge is to get the compiler to
understand which one you want to
refer to.

The scope of an identifier is the
range of instructions over which
the identifier is known, and so can
be directly accessed. An identifier
is visible within its scope and invis-
ible outside it; however, it is possi-
ble to override scope in many
cases (we’ll come back to this
later). The location of an identi-

fier’s declaration
determines its
scope, as deter-
mined by a set of
rules, some of
which rely on an
understanding of
the term block.

Delphi Object
Pascal is often
described as a

block-structured language, as any
program is built out of various
blocks. A block is the begin..end
part of a program, procedure, func-
tion or method, along with any
declarations that immediately
precede it (parameters, variables,
constants, resource strings, types,
procedures, functions, and
labels).

Given this definition, here are
the scope rules of ObjectPascal:
➢ If the identifier is declared in

the declaration of a program (in
an application or DLL project
source file), function or proce-
dure, its scope goes from the
declaration point to the end of
that block.

➢ If the identifier is declared in
the interface section of a unit,
its scope goes from that point
to the end of the unit, and to any
unit or program that uses the
unit.

➢ If the identifier is declared in
the implementation section of a
unit (outside of any function or
procedure), its scope goes
from the declaration point to
the end of the unit.

➢ If the identifier is declared as a
field in a record definition, its
scope goes from the declara-
tion point to the end of the
record definition.

➢ If the identifier is declared as a
data field, property or method
in a class, its scope goes from
the declaration point to the end
of the class type definition, and
will also include descendants of
the class and the code in the
methods of the class and its de-
scendants. An exception to this
is that items declared in the
private section of a class will
not be in the scope of descen-
dant classes declared in any
other unit.

When a program is running and a
line of code is executing, a number
of nested scopes will be active. For
example, if it is compiling a line of
code in a method, the method
scope is the active scope. The next
scope in the current ‘scope hierar-
chy’ will be the class scope, fol-
lowed by the scope of the current
unit, followed by the scope of the
last unit in the implementation

➤ Figure 2:
Preparing
to print a
web page.

68 The Delphi Magazine Issue 66

section uses clause. Each preced-
ing unit adds another nested scope
and the same applies to the
interface section uses clause.

When you make a reference to an
identifier, the compiler checks
each scope in turn, starting with
the active scope, looking for a
declaration of that identifier. Note
that the compiler will not automati-
cally look at the fields in a record
variable, or the fields of an object
variable when searching for an
identifier.

If the identifier you seek is in one
scope, but a closer scope defines
an identifier with the same name,
your target identifier (the outer
declaration) will be hidden by the
closer one (the inner declaration).
This is referred to as a naming
conflict and needs to be overcome.

You can (usually) resolve
naming conflicts using qualified
identifiers. A qualified identifier
allows you to refer to an identifier
declared in a specific scope,
assuming there is a way of identify-
ing that scope. We should already
be familiar with some forms of
qualified identifiers, as we use
them to access public or published

procedure TMainForm.Button1Click(Sender: TObject);
const
Foo: Integer = 57;

begin
//Access local variable, parameter or nested routine
ShowInt(Foo); //57
//Access data field or method of this class
ShowInt(Self.Foo); //1
//Access data field or method of other class
ShowInt(OtherForm.Foo); //7
//Access variable or routine from this unit
ShowInt(ScopeTestMainForm.Foo); //99
//Access variable or routine from other unit
ShowInt(ScopeTestOtherForm.Foo); //100

end;

procedure TMainForm.Button2Click(Sender: TObject);
const
Foo: Integer = 57;

begin
with OtherForm do begin
//Access local variable, parameter or nested routine
//Cannot be done from inside this with statement
//Access data field or method of this class
ShowInt(Self.Foo); //1
//Access data field or method of other class
ShowInt(Foo); //7
//Access variable or routine from this unit
ShowInt(ScopeTestMainForm.Foo); //99
//Access variable or routine from other unit
ShowInt(ScopeTestOtherForm.Foo); //100

end
end;

➤ Listing 3:
An additional scope causes potential problems for local identifiers.

➤ Listing 2:
Qualified identifier references to overcome naming conflicts.

properties and methods of objects,
or fields of forms. When you refer
to Button1.Caption, you are qualify-
ing the reference to the Caption
identifier with the reference to the
scope of Button1. The same applies
to accessing record fields.

It is less common to qualify refer-
ences to global identifiers in a unit,
but no less valid. The reason we
are less familiar with qualifying ref-
erences to identifiers in units is
that the compiler will automati-
cally look in unit scopes, as long as
the units are in a uses clause. But
there comes a time (when naming
conflicts arise) when we have no
choice but to do it.

To try and help understand the
naming conflicts problem in gen-
eral and how to overcome it where
possible, let’s look at a contrived
example, where the same identifier
is defined in a whole variety of
places.

Take the case of a project
(ScopeTest.dpr) with two forms
(MainForm and OtherForm) that live
in two form units (ScopeTestMain-
Form.pas and ScopeTestOther-
Form.pas). MainForm has a public
Integer function which is

called Foo declared and OtherForm
declares a public Integer data field
called Foo. The ScopeTestMainForm
unit declares an Integer variable
Foo in the implementation section
and the ScopeTestOtherForm unit
declares an Integer function Foo in
the interface section of the unit.

The main form has two buttons
on it. The event handlers for both
buttons declare a local Integer
constant called Foo. The first
button is going to access five iden-
tifiers all called Foo: the local con-
stant, the main form function, the
variable in the same unit, the other
form’s Integer data field and the
other unit’s Integer function.

Any simple unqualified refer-
ence to Foo will access the local
constant, so all the other refer-
ences must be qualified. Listing 2
shows how to qualify the other
references. Self can be used to
qualify an identifier declared in the
same class, whilst an object refer-
ence (such as OtherForm) can be
used to qualify references to an
identifier defined in another class.
Finally, getting back to the original
question, you can qualify an identi-
fier in any unit by using the unit
name.

A twist to this arrangement
occurs when a with statement is
used. A with statement enters
another nested scope, that of the
specified object or record. If you
are in a scope orchestrated by a
with statement, you can still
access most items you need that
are suffering from a naming con-
flict, with the exception of local
variables or constants, parame-
ters to the subroutine and nested
routines, as shown in Listing 3.
From inside the with statement,
you can directly access identifiers
declared in the other form and its
unit, but you cannot access local
identifiers which have naming
conflicts.

Moved Components
Lose Events

QI have taken a tab control
from my Delphi application

and changed the parent window,
so it appears on another applica-
tion’s window (I am trying to add

70 The Delphi Magazine Issue 66

some behaviour to another appli-
cation). What troubles me is that
the OnChange event assigned to the
control no longer works when it is
not a child of a Delphi form. Have
you experienced anything like this
before?

AI haven’t noticed the prob-
lem personally, but I can un-

derstand why it might occur. It’s all
to do with the way that component
events are synthesised from Win-
dows messages and how those
messages are delivered.

The problem arises because of
how Windows applications were
originally intended to be devel-
oped. Microsoft supplied pre-built
controls in the operating system
(such as the button, edit and
listbox controls) and you created
instances of them and made them
children of your window.

In order to customise the behav-
iour of the window as a whole, you
wrote a window procedure for it.
The window procedure was given a
whole variety of messages as and
when needed, which the program-
mer may or may not be interested
in responding to. A large case state-
ment was used to filter out the
messages of interest and respond
to them.

Because of this general architec-
ture, it made sense that when
something happened to a control,
such as a button getting clicked or
a character being typed in an edit
control, the message describing
the occurrence was sent to the
parent window’s window proce-
dure. This type of message is called
a notification message and there
are several of them, including
WM_COMMAND and WM_NOTIFY to name
but two.

In the Delphi environment, we
are not so used to this notification
idea. When someone presses a
button, the button has its own
event that fires. Granted, the event
handler will probably be defined as
a form method, but the location of
the event handler is irrelevant. The
key point is that the button
component knows when some-
thing happens to itself, and it fires
its own event when it does.

But a button component is just
an object wrapper around a Win-
dows button control that still
sends notification message to its
parent. The VCL works some inter-
nal trickery to enable the button to
have the knowledge required to
trigger its OnClick event.

Whenever a notification mes-
sage is sent to a form (or any
TWinControl), the form then imme-
diately sends an internal version of
the same message (called a compo-
nent notification message) back to
the control that the message
relates to. The message has the
same parameters associated with
it, but has CN_BASE added onto the
message number. WM_COMMAND
becomes CN_COMMAND and WM_NOTIFY
becomes CN_NOTIFY. In fact, Delphi
defines a whole batch of compo-
nent notification message con-
stants in the Controls unit. When
the control picks up the compo-
nent notification message it has
the opportunity to trigger an
appropriate event.

The problem in the question
occurs because the tab control has
been given a parent that is not a
Delphi TWinControl. Consequently,
when the new parent window
receives notification messages
regarding the tab control (such as
the one that indicates a new tab

has been selected), it does nothing
with them.

To overcome the problem I rec-
ommend placing the tab control
(or whatever it happens to be) on a
form whose AutoSize property is
True, and whose BorderStyle is set
to bsNone. AutoSize was introduced
in Delphi 4 and will make the form
shrink to be exactly the same size
as the tab control. With the form
ready, you should change the
parent window of this form, rather
than the control. The result of this
will be that the tab control will still
have a VCL parent and so the com-
ponent notifications will still be
sent to the tab control.

To change the parent window of
an existing instance of the form,
you can use the SetParent API (see
the Unit Ambiguity entry above for
details on avoiding a potential
problem with calling it). The first
parameter is the window handle of
the control that is to be moved
(the form’s Handle property) and
the second parameter is the
handle of the new parent (you can
locate a window in another appli-
cation with the FindWindow API).
Alternatively you can construct
the form with the CreateParented
constructor which takes a window
handle and makes the form be a
child to that window.

Unreadable Tooltips

QI often use the Code Comple-
tion feature during develop-

ment, but recently I noticed a
problem with it. When an item in
the list is too long to display in its
entirety, you can place your mouse
over it to display a tooltip which
then shows the whole item. How-
ever, the tooltip does not seem to
use the system tooltip font colour
and plays havoc on my system.

You see, I use a colour scheme
where tooltips have a yellow font
on a black background (the
reverse of the normal setup). The
Code Completion tooltip displays
with a black background, as per
Control Panel, but uses a black font
regardless of the Control Panel set-
ting, making the tooltip useless. Is
there a setting in Delphi which can
fix this (I’d rather not change my

➤ Figure 3: Whilst Code Parameters tooltips behave,
Code Completion tooltips might not.

72 The Delphi Magazine Issue 66

Windows settings for the sake of
one tooltip).

AHaving changed my own
Windows settings around,

I can see that this is a problem.
Figure 3 shows the editor’s Code
Parameters tooltip using the sys-
tem colours correctly, but the
Code Completion window rather
fruitlessly using black on black.

This is a bug in that particular
IDE tooltip class, which is called
TKibitzHintWindow (the Code Com-
pletion window is referred to
internally as the kibitz window).
Whilst it uses clInfoBk for the
background, it uses clBlack
instead of clInfoText for the font
colour. I have reported the prob-
lem, which is present in Delphi 3, 4
and 5, so hopefully it will be fixed
for Delphi 6.

As the questioner says, one reso-
lution is to change the Windows
settings, but the request is for a
setting to remedy the problem.
Unfortunately, since this is a bug,
there is no provision in the IDE to
change the colour.

I tried to rustle up an expert that
could change the Font.Color prop-
erty used by the tooltip window,
but I couldn’t get it to work. Either
the tooltip ignores its own
Font.Color, or a new tooltip
window instance is created each
time it is required. So for the time
being, changing your Windows
settings is the only solution to this
problem.

Incidentally, you will probably
notice that the tooltip only lasts 2.5
seconds, which makes it difficult to
read long function declarations in
time before it disappears. I dis-
cussed how to remedy this prob-
lem by increasing the value of the
IDE’s Application.HintHidePause
property in the IDE Dissatisfaction
entry in The Delphi Clinic, back in
Issue 43 (March 1999).

Elusive Package Editors

QI am starting to use packages
more and more, but get quite

frustrated trying to locate the
package editor which seems to
keep disappearing behind the
source code editor. Is there a

keystroke to make the package
editor come to the foreground?

AI can fully understand your
frustration with trying to

keep the package editors available.
Many Delphi users dock them into
the editor or Object Inspector to
keep them accessible, so that
would be one option to consider.

As for a keystroke to bring a
package editor to the foreground,
the best you can find in the basic
IDE is Alt+0. This is the keyboard
shortcut for View | Window List...,
which produces a dialog with a
listbox populated by the captions
of all available windows in the IDE.
You can double-click on the item
that matches your package
editor’s caption and that window
will be brought to the foreground.

This solution itself is not that
good, because you then get a
modal window that you must dis-
miss to get the package editor
displayed. A possible improve-
ment here is to add this window list
command onto one of the IDE
toolbars in Delphi 5 or later. If you

right-click on any toolbar and
choose Customize... you can
select tool buttons that represent
most IDE menu items from the
Commandspage of the customisation
dialog.

Select View from the Categories:
list and Window List... from the
Commands: list, and drag it onto any
toolbar. The tool button that gets
created as from version 5 has a
small drop-down arrow next to it. If
you press this arrow, you get a
drop-down menu of all the window
captions that can be selected (see
Figure 4).

Incidentally, the tool button that
corresponds to File | Open... has
a drop-down button next to it
which shows the same things as
choosing File | Reopen. Also, the
Run | Run menu tool button has a
drop-down button which allows
you to select the active project

➤ Figure 4: The window list
drop-down menu.

➤ Listing 4:
Some expert snippets.

const
MenuBarItemCaption = '&Clinic';
MenuItemCaption = '&Show package editors';
MenuItemKey = VK_F2;
MenuItemShifts = [ssCtrl, ssAlt];

...
constructor TPackageExpert.Create;
var
FMainmenu: TIMainMenuIntf;

begin
inherited;
if Assigned(ToolServices) then begin
FMainMenu := ToolServices.GetMainMenu;
if Assigned(FMainMenu) then
try
FMenuBarItem := FMainMenu.GetMenuItems.InsertItem(
FMainMenu.GetMenuItems.GetItemCount-1,
MenuBarItemCaption, '', '', 0, 0, 0, [mfEnabled, mfVisible], nil);

FMenuItem := FMenuBarItem.InsertItem(0,
MenuItemCaption, '', '', ShortCut(MenuItemKey, MenuItemShifts),
0, 0, [mfEnabled, mfVisible], MenuItemClick);

finally
FMainMenu.Free

end
end

end;
...
procedure TPackageExpert.MenuItemClick(Sender: TIMenuItemIntf);
var
I: Integer;

begin
for I := 0 to Screen.FormCount - 1 do
if CompareText(Screen.Forms[I].ClassName, 'TPackageEditorForm') = 0 then
Screen.Forms[I].BringToFront

end;

February 2001 The Delphi Magazine 73

from those set up in the current
project group.

So this new tool button gets rid
of the modal window, but that
doesn’t answer the question of
whether there is a dedicated key-
stroke for the job. The answer to
this question is ‘not in the product
as supplied in the box’, but it is not
difficult to change this answer to
‘yes, with a little creativity’.

To provide a solution to the
problem, I have written a small
expert whose sole job is to bring
any package editors open in the
IDE to the foreground. It sits as a
menu item in a menu of its own, and
has a shortcut key associated with
it. I chose Ctrl+Alt+F2, but this can
easily be changed in the source
code.

The package is called
DCLPkgEdt50.dpk, which is a
Delphi 5 package. The important
code is in the PackageExpert.pas
unit, which can easily be
added to a new package

created in other versions of Delphi.
The key code from the unit can be
seen in Listing 4. The expert con-
structor locates the IDE’s main
menu and inserts into it a new top
level menu. Then it adds a new
menu item into that menu and sets
up an OnClick event handler for it.

The event handler uses Delphi’s
Screen object to find all the pack-
age editors. All forms in any VCL
application have references main-
tained in the Screen.Forms array, in
which there are Screen.FormCount
elements. Each form has its class
name compared with that of a
package editor. If a match is found,
the form is sent to the front of the
Z-order, so it can be seen. The
expert’s menu item is visible in
Figure 5.

By the way, if you wondered
where the IDE’s Window menu came
from in Figure 4 and Figure 5,
as well as the oddly formed

Component Palette tabs, the
answer is from my IDE add-in pack-
age called Archaeopteryx (dis-
cussed in an article in Issue 27).
The usual reason people install
this add-in is to get a multi-line
Component Palette, but I disabled
that option for these screenshots.
You can download Archaeopteryx
from the Downloads area of my
website, www.blong.com.

➤ Figure 5: The new
expert menu item.

	Printing Web Pages
	Unit Ambiguity
	Moved Components Lose Events
	Unreadable Tooltips
	Elusive Package Editors

